If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2+87f+18=0
a = 3; b = 87; c = +18;
Δ = b2-4ac
Δ = 872-4·3·18
Δ = 7353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7353}=\sqrt{9*817}=\sqrt{9}*\sqrt{817}=3\sqrt{817}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(87)-3\sqrt{817}}{2*3}=\frac{-87-3\sqrt{817}}{6} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(87)+3\sqrt{817}}{2*3}=\frac{-87+3\sqrt{817}}{6} $
| 3x^2+27x+1200=0 | | 4x+24=3+x | | 3x²+10x-3600=0 | | -6t+5t+3=4+t | | 7y+4=13 | | 10n+2=7n+25 | | 3+7x(4-1)/3=0 | | 5x^2+8x-4=0. | | x+2/x+3+5=1/2 | | 3(x+40)+2x=8745 | | 71-x=56 | | 6x+6=20-7x | | X/2+4x=180 | | 4x^2=0,16x | | Y-4/3+3y=4. | | (1/2)x+4=(2/3x+1 | | (10198593.60-x)/4554481.60=0.12 | | 10198593.60-x=54657.79 | | (5-x)/3=0 | | (5-x)/3=0.12 | | 5p-3=8*5-1 | | x/(x+1)=0.78 | | (3x+10)=90° | | 55=(2x-5)+(2x-5)+x | | x=4x/7+18 | | (3.14*18)*17.5=3.14*(3a*17.5) | | (4n+6)(8n+8)=0 | | x+x+2=0 | | 0.5x*8=40 | | y²+24y+60=0 | | (2÷x)×x=1.4 | | 26=4y+5(y+7) |